
A Baseline for Automated Card Tracking for Bridge Game Broadcasting

Ioannis Christos Karakozis
Princeton University

Advisors: Adam Finkelstein, Greg Humphreys

Abstract

Millions of people play contract bridge worldwide in
clubs, tournaments, online and with friends at home, mak-
ing it one of the world’s most popular card games. Cur-
rently, there are hired professionals to record the plays per-
formed at high stakes bridge tournament tables so that the
game can be broadcast online in a viewer-friendly format.
This process is inefficient and costly, as a separate human
observer is needed for every bridge table in the tournament.

This project takes the necessary first steps to develop a
fully automated system that reliably tracks the plays per-
formed and broadcasts them in a viewer-friendly format. It
introduces an original dataset card detection comprised of
frames extracted from video recordings of bridge play, it
introduces a baseline algorithm for automated card track-
ing that is developed with traditional computer vision tech-
niques, and it develops a neural network system for card
classification achieving high levels of classification accu-
racy.

The project code is publicly available at this link. To
request access to the CARDS dataset, contact the author at
ick@princeton.edu.

1. Introduction
Contract bridge, or simply bridge, is a trick-taking card

game using a standard 52-card deck. It is played by four
players in two competing partnerships, with partners sitting
opposite to each other around a table. Millions of people
play bridge worldwide in clubs, tournaments, online and
with friends at home, making it one of the world’s most
popular card games [2].

Despite its popularity and highly prevalent tournaments,
bridge competition processes for recording competitive
games and broadcasting them online are utilizing fairly
outdated techniques for achieving their goal. According
to bridge master Greg Humphreys, bridge tournament
organizations hire individuals to manually record and input
the plays made on bridge tournament tables to the online

Figure 1. Overhead view of a typical bridge tournament table
setup.

broadcasting system [11]. Since every table requires a
separate human observer, this leads to bridge tournament
organizations spending a significant amount of money,
making this process highly cost-inefficient, despite being
prone to frequent human errors [11].

Given recent developments in object detection algo-
rithms in the field of computer vision, this process could
definitely be automated. The human observers could be
replaced with a camera system that would perform exactly
the same functionality automatically, without any human
intervention other than the initial setup. This would lead
to lower costs for the tournament organizations in the
long-term, as they would only have to face the one-time
fixed cost of purchasing the necessary equipment for such
a system. This system would also improve the viewer
experience, as a computer system can detect and broadcast
the bridge plays almost instantaneously, potentially with a
much lower error rate than that of the human observers.

The problem though is not as simple as it might initially
seem. If the only items present on the bridge table were the
playing cards and green felt, then the problem would be

1

https://github.com/I-C-Karakozis/bridge_tracker

fairly easy to solve. What complicates things is that there
are multiple items on a bridge table, such as special linings
to separate the playing area of each player, notepads,
lucky charms, personal items the players bring, etc. Most
importantly, there is a wall-divider blocking the line of
sight between teammates to prevent cheating. This makes
the task particularly challenging since it forces the overhead
placement of any recording device needed by the proposed
computer vision system at a significant distance above the
table. This also implies that part of the table is not visible
by the overhead camera. A representative example of such
a setup can be seen in Figure 1.

The system to be developed has to be able to detect
cards when those are present at a sizable distance from the
device that will be feeding the system with the overhead
view of the table. The system would be able to correctly
detect and classify the cards, even in the occurrence of card
occlusions, lighting variations, and the presence of items
similar to the cards, such as personal items and bridge
bidding cards. It should be able to identify which player
has played each card and reason through illegal plays the
players have made. This system should be able to detect
when a bridge hand starts and identify the plays as they are
being made, while allocating tricks to the winner of each
play. It should finally parse this information and present it
to the viewer in a pleasant to the eye format. All of these
processes should be fully automated, without the need of
human intervention, to tackle the existing inefficiencies in
the process.

Due to the high complexity of the task at hand and
the limited time available for the delivery of this project,
this project focuses on the detection component of the
system. It implements a baseline card detection algorithm,
introduces the first ever card detection dataset, and per-
forms experiments that confirm that deep learning can be
effectively leveraged for card detection.

Section 2 presents related work and background on com-
puter vision and the task of object detection. Section 3 intro-
duces the CARDS dataset and presents the relevant dataset
statistics. Section 4 introduces and evaluates a baseline card
detection algorithm developed using traditional computer
vision techniques. Section 5 presents and evaluated the deep
learning system developed for card classification and how
this system achieves high levels of classification accuracy,
even under restricted amount of data. Section 6 states our
conclusions and future work needed to develop the system
required to perform all stages of the target task.

2. Related Work
Detection Dataset: Any machine learning technique
requires a sufficiently big dataset to leverage big data
properties and sufficiently learn the target object classes.
For the tasks of object detection and classification, the
richest such datasets are ImageNet [4], Pascal VOC [5], and
MS COCO [14]. However, none of these datasets include
playing card object classes, despite their extensive size.
In particular, despite extensive search on existing object
detection and classification datasets, there were no datasets
with object classes related to playing cards. Thus, the first
problem this project is dealing with is the creation of such
a dataset that would allow the leverage of machine learning
techniques to tackle the target task.

Traditional Object Detection Algorithms: Over the last
20 years, a significant amount of progress has been made
on the task of object detection. Traditional computer vision
object detection algorithms have utilized sliding windows
and feature representations specific to the target objects.
Examples of such algorithms are ones based on SIFT
features [15], horizontal and vertical filters [19], and the
Bag of Words model [1].

Alternative attempts to model the target object classes
took the form of template matching algorithms, which aim
at deriving a representation of the target object off-line.
The resulting set of representations exploits any potential
structure in the template distribution of the target object
class, so that online matching can be performed using
generalized distance transforms [12].

The disadvantage of all of the methods listed was
that they could not easily detect objects suffering from
significant perspective changes or occlusion of key features
needed for detection. This is because, be it high-level
templates or low-level features, it is hard to manually
capture all possible object representations that can be seen
in the wild for a particular object class.

Algorithms that attempted to achieve more generalized
representations of the target object were Histogram of
Oriented Gradients-based (HoG) algorithms [3]. This
technique counted occurrences of gradient orientation in
localized portions of an image, forming this way a vector
representation of the image. It then used Support Vector
Machines to identify the class of objects present in the
image. By performing this at various scales and utilizing
non-maximum suppression, the objects of the desired class
could be identified and localized correctly. Again though,
this technique performed to a limited extent in the presence
of significant object deformations due to perspective
transforms and occlusions [3].

2

To deal with the problem of deformation, the HoG
features algorithm was enhanced in the Deformable Parts
Model [6]. This work broke down the desired object
class in parts that could be detected independently using
HoG features (e.g limbs, torso, and head for a human)
and then be put back together to localize an object of the
desired class. This model still suffered in the presence
of significant perspective transforms, deformations and
occlusions, despite its superiority over all previous models.

Regardless of the limitations of traditional object detec-
tion algorithms, the most prominent disadvantage of them
is their limitation in their ability to generalize to multiple
object classes. Most of these algorithms were targeting
a particular object class, such as pedestrians [12], human
faces [19] or humans in general [3, 6]. Therefore, building
upon any of those algorithms for card detection requires
specializing the chosen algorithm for the 52 possible
combinations of rank-suit observed in a typical deck of
cards. Given most cards of the same rank and suit are
extremely similar to one another, our baseline algorithm
is a specialized to cards version of the Chamfer Template
Matching Algorithm [12], which heavily leverages the
sharing of common structure and low-intraclass variation
among objects of the same class.

Convolutional Neural Networks: Neural networks have
succeeded in tackling the inability of traditional object
detection algorithms to generalize to multiple object
classes without having the need to model each object class
separately. State-of-the-art object classification architec-
tures, such as VGG [16] and ResNet [8], have not only
outperformed all previous object classification methods.
The same goes for the family of R-CNN networks [7], the
state-of-the-art object detection deep learning architectures.
Therefore, it seems that these architectures are ideal for
tackling the problems of card classification and detection,
due to how good these models are at representing the
target object class in a form that can handle occlusions,
deformations and perspective transforms.

The biggest limitation of neural networks is that they re-
quire a sizeable amount of data to achieve satisfactory re-
sults. Although this can be ameliorated by learning some
generic objectness features by pretraining on the ILSVRC
classification challenge dataset [4, 10], deep networks still
require a significant amount of data to achieve satisfactory
generalization performance and avoid overfitting. There-
fore, tackling any object detection problem using neural net-
works is highly dependent on the development of an appro-
priately large dataset, which motivated the development of
the CARDS dataset.

Figure 2. The dummy lays out their cards on the table, making
them visible to everyone. In this image, the player at the bottom
right corner is the dummy.

3. The CARDS Dataset
Due to the lack of existing annotated card detection

datasets, one had to be developed for the purposes of this
project. Thus, we are introducing the CARDS dataset.

3.1. Object Classes

CARDS includes annotated images for card detection in
the context of bridge. To this purpose, 53 object classes are
specified. The 52 basic classes represent the 52 possible
combinations for a cards rank {2, 3, 4, 5, 6, 7, 8, 9, 10,
Jack, Queen, King, Ace} and suit {Diamond, Hearts, Club
Space}. The 53rd class is included because of special rule
in bridge called ”the dummy”. In particular, this class is
labeled as ”Dummy”.

The dummy in bridge is a player who lays out their
cards wide open on the bridge table, making them visible to
all other players. Therefore, their cards are visible despite
not yet being played. Such a situation is depicted in Figure
2. In the context of generic object detection, this is not a
problem, as we would care about localizing every possible
card. In the context of card detection for bridge, we only
care about detecting cards that have been played and are
”active”, which do not include the cards of the dummy
player. This is because the end goal of the algorithm is
to detect all plays that are being made by the players,
which do not include the unplayed dummy cards. Those
visible cards have to be separately labeled to ensure that
an algorithm that detects those cards is neither rewarded
nor penalized for doing so. Thus, cards that fall within
the dummy area are not identified individually, but are
collectively localized by a ground truth bounding box and
labeled with the ”Dummy” object class. Such an annotation
is presented in Figure 4.

In terms of ”active cards”, we only annotate cards that
we deem visible and identifiable by a human agent. In other

3

Figure 3. Number of instances per object class in CARDS.

Figure 4. The light blue bounding box corresponds to a ”Dummy”
class annotation. Notice how the cards inside the bounding box
are not individually labeled as they have not been played yet.

words, we draw bounding boxes around the cards that have
been played and a human can unambiguously identify their
rank and suit. Otherwise, we assume their salient features
are too deformed to expect a network to label and learn the
correct class from the deformed card. Such significant de-
formations are typically results of card occlusions and/or
significant motion blur.

3.2. Dataset Components

CARDS consist of three sub-components:

1. Single-Card: 165 images of single-card instances, at
various rotations, scales and lighting conditions. These
are considered simple card instances, which would be
easy to detect and classify correctly. No occlusion,
motion blur, or shadows are present in those images.
A single deck of cards is being used for this set of
instances, which makes the detection task even eas-
ier as all cards of the same rank and suit have exactly
the same look and shape. Since there is a single card

on each frame, this component contains 165 card in-
stances.

2. Simple-Bridge: 574 frames extracted from 29.5 min-
utes of bridge play recorded at 1080p resolution and 24
fps. A single frame is used per second of the record-
ing to avoid repeated frames. Frames in which no ”ac-
tive cards” are present were manually removed, as it
will be detailed in Section 3.3. A typical frame of this
component is presented in Figure 2. Multiple cards
are present on a table with green felt and no foreign
objects are present other than the players themselves.
”Dummy” instances can be present. Motion blur, rota-
tions, variations in scale, occlusions and lighting vari-
ations are present across the card instance of this com-
ponents. The frames are extracted from two bridge
games at different locations, to make the instances of
this component more representative of bridge game se-
tups. The total number of non-dummy card instances
is 1129.

3. Complex-Bridge: 269 frames extracted from 17.5
minutes of bridge play recorded at 1080p resolution
and 24 fps. A single frame is used per second of
the recording to avoid repeated frames. Frames in
which no ”active cards” are present were manually re-
moved, as it will be detailed in Section 3.3. A typ-
ical frame of this component is presented in Figure
4. This component is identical to the Simple-Bridge
component, with only two differences that makes this
a harder dataset to classify: 1) foreign objects, such
as bidding trays, are present on the table along with
the cards, as evident in Figure 4, 2) multiple types of
decks were used, which increases the intra-class varia-
tion of each rank-suit class of cards. The total number
of non-dummy card instances is 594.

In total, there are 1008 frames, with 1888 card instances,
if we exclude the ”Dummy” class annotations (1.87 ”active
cards” per frame on average). If we include the dummy
annotations, the total number of bounding box instances
amounts to 2562. The total annotation time amounted to
approximately 15 hours.

4

Figure 5. Percentage of frames for each number of card instances
present in a frame. Notice how the percentage of frames with more
than 5 object instances (blue line) and the percentage of frames
with more than 4 card instances (red line) is very small, a conse-
quence of bridge restricting every player to have up to one card
”active” at a time.

3.3. Dataset Statistics

The number of instances per rank-suit can be viewed in
Figure 3. Note that there is a very even representation for
suit, with a standard deviation over average on the number
of instances being 0.0679. By contrast, the distribution
gets more and more uneven, as you increase the number of
classes one considers. The same value for rank is 0.2361
and for rank-suit pairs is 0.4483, which indicate that certain
classes are way more prominent than others. For example,
the Queen of Hearts has 68 instances while the King of
Clubs only has 18. Similarly, while there are only 92 Kings
in the dataset, there are 195 Aces. This class bias can
lead to skewed training of machine learning algorithms
towards specific classes, that can potentially dominate the
classifications during test-time, leading to higher test error.
Due to the large number of object classes, the only way
to mitigate this bias towards specific object classes and
ranks, a larger dataset should be developed, Unfortunately,
this was not feasible in this context due to the limited time
available.

Following the examples of [4, 14], we also report the per-
centage of frames for each number of card instances present
in a frame as a measure of how richly annotated our samples
are on average. This is depicted in Figure 5. Note that be-
cause each card is unique in a deck, this also corresponds to
the number of object classes present in an image. The aver-
age number of instances per image are 2.70 if we include the
Dummy objects and 1.87 if we do not. These averages are
higher than the one for PASCAL VOC [5] but lower than the
ones for ImageNet and COCO [4, 14], which indicates our

images are moderately rich in number of instances. Note
though, that it is extremely unlikely to observe more than 4
instances (if one excludes the dummy) in a frame, since up
to four cards can be legally played simultaneously in bridge.
If the number of card instances is greater than 4, then some
player must have made a mistake which, as evident from
Figure 5, this happens very rarely (see red line). Given this
inherent restriction in the recording of our data, CARDS is
actually very rich in the number of card instances per frame,
which is a result of the filtering process described in Section
3.3.

3.4. Annotation Pipeline

The initial plan for the project was to use Amazon
Mechanical Turk for the dataset annotation, like it was
done in [4, 14], to allow for large scale data annotation and
verification. However, due to limited financial resources,
delay in the collection of the initial video samples and
development of the necessary annotation tools, we had to
resort to manually annotating the frames ourselves. Thus,
we developed a custom annotation pipeline depicted in
Figure 6.

A total of two and a half hours of bridge were recorded
in three different locations to capture possible lighting
variations in the dataset. However, out of the total play
time, only 45 minutes of footage were used for the data
extraction. This because bridge players take a lot of time
to think, deal, and bid, which leads to a lot of frames in
which no active cards are present. Even in the cases in
which ”active cards” are present in the frame, the time
players take to think might be so significant at times, that a
fraction of frames with ”active cards” had to be removed
to prevent certain combinations of rank-suit dominating
the dataset. Thus, this resulted in 1008 frames being used,
which correspond to approximately 17 minutes of game
time, given we only use one frame per second, for the
reasons explained in the previous section.

The video samples were collected using a GoPro Hero
5 Session mounted on a tall tripod with an extension that
allowed the placement of the camera at a significant height
right above the table (The equipment is readily available
in the Princeton University Computer Science Technology
Office. You can also contact the author for further details).
After the footage is collected, parsed into frames and those
are filtered into frames in which active cards are present,
the frames were annotated using a bounding box annotator.
The bounding box annotator used was adapted from the
following MIT licensed open source labelling software:
https://github.com/puzzledqs/BBox-Label-Tool.

Given the camera tripod was placed right next to the

5

Figure 6. Annotation pipeline for CARDS dataset. We used the bounding box annotations to extract single card instance annotations to
form a secondary classification dataset programmatically.

corner of the table to ensure the players experienced the
minimum amount of discomfort, all frames were rotated
by 45 degrees before annotation to render the table edges
parallel to frame boundaries. An example of such a rotation
is presented in the left image of Figure 6. This was nec-
essary to ensure more compact bounding box annotations,
whose edges are parallel to the boundaries of the image.
Post-annotation, which amounted to approximately 15
hours of work, a 2.5 hour verification process followed, in
which we ensured no cards were mislabelled or missed and
that the bounding box annotations were tight.

The final step was to extract single-card instances from
our labelled frames, as evident in the lower half of Figure
6, to form a secondary classification dataset of single card
instances. This classification dataset had size of 1888 card
instances, with the object class breakdown provided in Fig-
ure 3. This extraction was necessary to ultimately train our
deep learning classifier, further detailed in Section 5.

4. Baseline Card Detection Algorithm
According to Greg Humphreys [11], the first attempt to

integrate an automatic card detector to a professional bridge
setup was made in 2011. However, that implementation
was operating under very strict restrictions that forced the
players to play cards in a particular way that was deemed
”distracting”. Because of that, the system was used for a
very limited time by the bridge tournament organizations.
Thus, there is no public documentation or performance

metrics analysis on the exact computer vision techniques
used by the algorithm. Therefore, to understand the system
we need to build better, we attempt to reproduce this
algorithm.

According to [11], this algorithm required players to
detach the card played from their hand and place it an
rectangular area that was drawn on the table, similarly to
the lines on the bridge table depicted in Figure 1. This way
the card was directly visible to the camera and was outlined
by auxiliary lines that allowed the algorithm to more easily
separate the card from the background. While we will
maintain the first restriction in our algorithm, i.e. that
the card will not be occluded by any object nor will it be
experiencing deformations, we will not be using auxiliary
lines, nor guarantee the camera is placed at a fixed height
and position. This allows for scale and perspective changes.
Thus, our baseline algorithm needs to be robust to sizeable
perspective transforms and scale or rotation variations.

More concretely, the simplifying assumptions we make
are: 1) occlusions and deformations of the card are not pos-
sible, 2) a specific set of cards is being used, 3) a rectangular
area of card and background that fully encloses the card can
be isolated, 4) the card is placed on felt of uniform color,
as is typically the case in professional bridge tournaments.
An example of assumption 3 is depicted in Figure 7. The
pipeline of the algorithm described in the following subsec-
tions is visualized in Figure 8.

6

Figure 7. The card is fully enclosed by the frame, leading to no
occlusions. However card rotations and perspective transforms are
allowed.

4.1. Modelling the Background Felt

Given that most professional bridge tables are covered
by felt of uniform color, we developed an algorithm that
exploits this environmental element. In particular, we as-
sume that the relatively uniform color channel values of the
pixels corresponding to the felt are distributed according to
a Multivariate Gaussian distribution with small variance.
This approach worked really well for modelling and
removing static backgrounds of relatively uniform color
in the project I had undertaken in the Princeton Computer
Vision course (COS 429) offered in Fall 2017 [9].

The proposed algorithm makes the assumption that
all pixels at the boundary of the frame belong to the
background, i.e. are part of the felt. The algorithm collects
all the pixels on the frame boundary and treats them as a
representative sample for the background color distribution.
It then parametrizes a k-dimensional Multivariate Gaussian
distribution from the sample using maximum likelihood
estimation. Using the resulting mean vector and covariance
matrix, the algorithm performs a chi-square hypothesis
test on every pixel of the to determine whether the pixels
belong to the foreground or are part of the background, i.e.
the felt. Note that this felt subtraction algorithm can work
on uniform felt of any color, as long as that color differs
from the colors found on a card (i.e. red, black and white).

Represent the intensity of each pixel with k color chan-
nels as the vector ~x ∈ Rk (in the case of colored pixels,
k = 3). We assume the user has access to n background
felt pixels to train the model with. The n pixels take
color channel values ~x1, . . . , ~xn. Thus we can model the
background color with a Multivariate Gaussian Distribution
~xBG ∼ N(~̂µ, ~̂σ2Ik). For simplicity, we assume the chan-
nels of each pixel are independent and, thus, all covariances
are zero, rendering the covariance matrix diagonal.

The parameters of the distribution are estimated using

the Maximum Likelihood Estimators of the Multivariate
Gaussian Distribution. The maximum likelihood estimator
of the mean vector is given by:

~̂µ =

∑n
i=1 ~xi
n

(1)

To be consistent with the channel independence assump-
tion, the variance of each channel is estimated indepen-
dently by using the Maximum Likelihood Estimator of
the simple Gaussian Distribution (since all covariances are
zero):

∀j ∈ {1 . . . k}, σ̂2
j =

∑n
i=1(vi,j − µ̂j)

2

n
(2)

where µ̂j and σ̂ 2
j are the maximum likelihood estimator of

the mean and variance of the j-th color channel respectively.

By defining the foreground pixels as pixels that are not
part of the felt background, one can use hypothesis testing
on the modeled population ~xBG. The null hypothesis states
that an observed pixel ~x′ is well-modeled by ~xBG and, thus,
belongs to the background, while the alternative hypothesis
states that the pixel is a foreground pixel. For the pixel in
question, given a new sample ~x′ to be classified, the test-
statistic T is given by:

T = (~x′ − ~̂µ)T · (~̂σ 2Ik)
−1 · (~x′ − ~̂µ) (3)

The null hypothesis now states that T is distributed un-
der Chi-Squared while the alternative hypothesis states that
T is distributed under non-central Chi-Squared. We deter-
mine the degrees of freedom from the dimensionality k of
the channels vector (DoF = k, as the channel components
are assumed independent of one another). Using cross val-
idation, we pick the right confidence level and then use the
appropriate threshold values for the test-statistic [17]. This
way we determine whether each pixel belongs to the fore-
ground or the background. Thus, we can determine which
pixels are part of the felt and subtract them from the frame
by thresholding, ending up with a frame in which only the
foreground pixels are visible, just like the second frame in
Figure 8. To remove any background noise that might have
remained, we grayscale the image and despeckle by con-
volving with a Gaussian filter.

4.2. Card Localization

Having removed all background pixels, we can now
easily identify the contours of the card. Contours are
defined as curves joining all the continuous points along
the boundary of an object, which should typically have the
same color or intensity. Due to the boundary of cards being
predominantly white and due to having blackened out all
the surrounding background pixels, it is very easy to detect

7

Figure 8. Baseline Card Detection Algorithm. The bottom half of the figure comprises of visualizations of each step of the algorithm.

the contours of the cards as there is a sharp brightness
change when one transitions from the black background
pixels to the white boundary pixels of the card.

The algorithm being used is the OpenCV implementa-
tion of the algorithm described in [18]. Assuming the back-
ground has been properly removed, the contour detection
algorithm returns the boundary of the card as well as the
boundaries of shapes within the card, such as the rank and
suit symbols. Then, we determine which of the contours
belong to the card outline by applying the following heuris-
tics:

1. The area of the contour is bigger than the minimum
expected card size and smaller than the maximum ex-
pected card size, which are being set using cross-
validation.

2. The contour has exactly four corners.

3. The contour is not fully enclosed by another contour,
which would typically imply it is the contour of a sym-
bol inside the card.

Thus, by removing all non-card contours, we end up with
a very precise localization of all the cards present in the
frame. An example of such a localization is the blue line
perfectly enclosing the card in the fourth frame in Figure 8.

4.3. Card Classification

Now that we have localized the card, what remains to
be done is identify the card rank and suit. To do so, we

perform a perspective transform of the card into a 200 by
300 fixed sized frame, like the one depicted in the third
frame from the left in Figure 8. Using this perspective
transform into a fixed sized warp, we can easily identify the
top-left corner area where we expect to find the rank and
suit of the card.

The reason it is important to identify the top-left corner
of the warp is because the perspective transform might
have resulted in a warp in which the card is in horizontal
orientation and not in the vertical orientation it is depicted
in the third frame in Figure 8. To check whether the
perspective transform warped the card into the correct
orientation, we check the color histogram of the top-left
corner. By comparing the color histograms of the top-left
corners of the two possible warps, we identify the one
with the lowest mean brightness value at the bottom 20%
of the pixels, ordered by brightness. The lower mean
brightness corresponds to the corner with the most black
or red pixels, which have lower color intensity than white
pixels. By identifying this corner, we can identify the
correct orientation and correct the warp if needed. This
way, we always end up with a card warp in which the card
is in upright orientation.

The next step is to compare the card against the pre-
processed card templates of each rank-suit pair. The images
that were used to extract those templates are excluded from
the CARDS dataset due to them comprising the training

8

Figure 9. The ace of hearts has two possible orientations due to
not being symmetric about the origin. Thus, two templates for this
card are needed. Note that, because the contour detection algo-
rithm is not perfectly precise, some boundary background pixels
might be collected as part of the card, as evident from the pixels
classified as red on the top and left boundary of the template on
the right.

set of the baseline algorithm and them being recorded in
highly controlled conditions that would be impossible to
replicate in practice to ensure high quality of the templates.
A template is a 200 by 300 card warp in upright orientation
with pixelwise color labels. The pixels are classified as
white, black or red, depending on the suit of the card and
whether the pixel is part of the foreground elements of the
card, such as the rank and suit symbols. Note that certain
cards have two possible upright orientations, as they are not
symmetric across the x-axis. The Ace of Hearts is such an
example and its warp templates are illustrated in Figure 9.

To compare against the warp templates, some pre-
processing of our card warp is required. Using the color
histogram of the warp corner, we can identify the color of
the card: black or red. Knowing the color of the card, we
can classify every pixel of the warp as white or non-white
(i.e. red or black depending on the determined color). We
do so by comparing against a threshold brightness value
that was set using cross-validation. However, because noise
might be present on the card, we observed certain isolated
white pixels are occasionally classified as non-white. To
remove such noise from the warp pixel labelling, we use
the OpenCV connected components despeckling algorithm.

Even after preprocessing the warps though, we observed
that some noise occasionally persisted on the boundaries
of the warps, as evident in Figure 9. This is because the
contour detection algorithm is not perfectly precise and
some boundary background pixels might be collected as

part of the card during contour detection. To overcome
this limitation of the contour detection algorithm, we
curtail the warp and template boundaries by a fixed number
of pixels on each side to remove potentially included
background that might ruin the template matching. The
number of pixels to be curtailed on each side was set using
cross-validation.

Now we are finally ready to perform template matching.
Since we already know the color of the card from the cor-
ner color histogram, we perform template matching only
against the templates of the cards with color matching the
identified color. The template matching algorithm used is
inspired from the Chamfer Template Matching algorithm
introduced in [12] that utilizes distance transforms. Specif-
ically, the Chamfer distance transform is defined as:

Dchamfer(T, I) =
1

|T |
∑
t∈T

dI(t) (4)

where T is the template warp, I is the card warp and
dI(t) = 0 if the pixel t is a background pixel; otherwise, it
is equal to the euclidean distance of foreground pixel t of
the template to the closest foreground pixel on our labelled
card warp. In the context of our algorithm, a background
pixel is a white pixel and a foreground pixel is a non-white
pixel.

To minimize the impact of noise that our pipeline is not
able to remove, we modify the Chamfer matching algorithm
by performing a two-sided distance transform:

Dchamfer+(T, I) =
∑
t∈T

dI(t) +
∑
i∈I

dT (i) (5)

This way, even if there are some remaining speckles in
either the template warp or the image warp, their contri-
bution in the total distance measure will be approximately
halved. This indeed lead to better performance during
test-time.

By computing the distance transforms against all
templates, we can pick the template that minimizes
Dchamfer+(T, I), identifying this way the rank and suit of
the card. This completes the detection algorithm, as we
have both localized the card and identified its rank and
suit, leading to a full detection like the one presented in the
fourth frame from the left in Figure 8.

4.4. Performance Evaluation

We evaluate the baseline algorithm on the Single-Card
and Complex-Bridge CARDS subcomponents. We mea-
sure the accuracy of the algorithm in terms of both card

9

Figure 10. Detection and classification accuracy for baseline card
detection algorithm.

detection and card classification accuracy. Card detection
accuracy is measured at an Intersection over Union (IoU)
threshold of 0.5. The results of our evaluation are depicted
in Figure 10.

As initially conjectured, we achieve an extremely high
performance in the simple scenarios represented in the
Single-Card CARDS component, achieving 100% detec-
tion accuracy and 98.18% classification accuracy. This was
to be expected as the baseline algorithm was developed
with the goal of perfectly handling those simple cases,
which are extremely similar to the cases that the algorithm
that was commercialized in 2011 was handling [11]. Thus,
our goal of replicating the results of the only ancestor to
our algorithm have been successful.

However, the performance is not nearly as good when
we remove all the simplifying assumptions and we use
our algorithm on unrestricted samples of cards from the
Complex-Bridge CARDS subcomponent. In particular, the
detection accuracy is only 29.42% and the classification
accuracy is only 38.09%. Note that the classification accu-
racy is measured by taking into consideration the cards that
were correctly detected. These levels of accuracy, along
with the fact that each card detection requires 0.87 seconds,
prevents this algorithms from becoming commercially
suitable for live bridge play tracking. This is because, not
only inference time is not fast enough to perform card
detection in an online fashion, but the algorithm seems to
be unable to handle card detection in the highly unrestricted
setup of bridge play.

To understand why the algorithm is failing, we per-
formed some analysis to identify the characteristics cases
that the algorithm is unable to detect correctly and the cor-
responding modes of failure. We identified the following:

1. Presence of foreign objects (such as a player’s hand) on
the frame boundary prevent the model from properly
modelling the felt pixels, thus leading to very noisy
background subtraction.

2. Significant card deformations, in the form of perspec-
tive transforms, motion blur, and card occlusions, pre-
vent the algorithm from correctly detecting the card
contours and localizing the card, leading to highly dis-

Figure 11. Representative examples of the failure modes of the
baseline algorithm. Top-left: Lighting variations lead to black
symbols on card appearing reddish, leading to color misclassifi-
cation. Top-right: Card experiencing significant perspective trans-
form due to player holding it sideways. Bottom-right: Card and
background occluded by player’s hand and other objects. Bottom-
left: Card deformed by motion blur.

torted card warps that is impossible to classify cor-
rectly with template matching.

3. Significant lighting variations across game environ-
ments can lead to a wide range of brightness levels
of the card pixels, which distorts the color histograms
and renders our fixed brightness threshold levels irrele-
vant. This in turn leads to incorrect color classification,
which leads to erroneous suit classification, even if the
detection of the card was very precise.

Failure modes (1) and (2) were the ones that were
encountered most frequently, given that bridge players
tend to play their cards really fast, sometimes without even
laying them fully flat on the table or fully detaching them
from their hand. Failure mode (3) was also encountered,
but it occurred less frequently, as a result of flickering
light or use of low quality indoor lighting. Figure 11
illustrates some representative examples of those failure
modes picked from the Complex-Bridge test set.

Overall, although our algorithm is not able to general-
ize well to unrestricted setups, we have developed an al-
gorithmic baseline that achieves high detection accuracy in
simple, restricted setups that could be replicated in practice
if we placed enough restrictions on the way professional
bridge players play their cards. According to [11], such re-
strictions have been attempted in the past with no success
though. Thus, we need to consider systems that are able to

10

handle the hard cases identified above without requiring any
restrictions on the way bridge players play.

5. Deep Learning Implementation
Given the recent success of deep learning systems in the

object classification and object detection tasks, we decided
to investigate whether neural network architectures are suit-
able for handling the task of card detection. To explore this
possibility, we decided to focus on the task of card classi-
fication, given that we had more samples for this compared
to task of card detection (1888 card instances vs 1008 an-
notated frames for card detection), which would allow us to
get more meaningful results, while still being able to com-
pare with our baseline algorithm.

5.1. Architecture

The network architectures considered were the VGG
and ResNet architectures introduced by [16] and [8]
respectively. A visualization of the structure of each of
those architectures is offered in Figure 12.

These networks were considered due to their exceptional
performance on the ILSVRC 1000-class classification task
[4]. The main difference between the two is that ResNet has
shortcuts connecting the beginning and end of each resid-
ual/convolutional block of the architecture [8]. This allows
the gradient to backpropagate effectively, even when using
very deep architectures. This allows us to use deeper ar-
chitectures, without worrying for vanishing gradients [8].
Because of this, the fact ResNet trained faster in our ex-
periments, an outcome of it having a single fully connected
layers instead of 3 that VGG has as evident in Figure 12,
and the fact that ResNet had achieved higher accuracies in
both the ILSVRC classification task [8] and our initial ex-
periments, we decided to go with the ResNet architecture
for our classification network.

5.2. Training and Validation

For training, we used 80% of the combination of the
Single-Card and Simple-Bridge CARDS subcomponents,
with the remaining 20% being used for validation. The
Complex-Bridge CARDS subcomponent was our test set,
so it was not presented to the network until test-time.

During training, a 224x224 crop is randomly sampled
from an image, with the per-pixel mean subtracted, as
suggested by [8]. We use backpropagation and Stochastic
Gradient Descent with mini-batche of size 16 for the weight
updates. Using cross validation, we initialize the learning
rate at 0.01. The learning rate is divided by 10 every 7
epochs and the network is trained for up to 30 epochs. Our
momentum parameter is also set through cross-validation
to 0.9. We do not use dropout, following the practice in [8].

Figure 12. VGG and ResNet architectures. Figure is borrowed
from [8].

Since our dataset is of small size, we employ data
augmentation techniques to artificially enlarge it, as it has
been shown that this can lead to a significant performance

11

Figure 13. Training and validation accuracy for various depth lev-
els.

boost [13]. However, when performing data augmentations
we have to ensure we preserve the structural invariances
of our objects, which in this case are all playing cards
from a standard 52-card deck. In particular, one of the
most distinct characteristic of playing cards is the fact that
the rank and suit of the card can always be found on the
top-left and bottom-right corner. For this reason, we cannot
use the horizontal and vertical flip techniques suggested
by [13], as they violate this invariance. Instead, the data
were augmented using rotations, random 224x224 crops
and color jitter. All of these transformations preserve the
card invariance just described. This artificial enhancement
of the training set led to a significant boost performance,
as conjectured by [13]. Thus, in all future experiments, we
used the augmented training set for training.

To identify the best architecture depth, we train and
validate ResNet architectures of various depth levels.
For this experiment, the network weights are initialized
using transfer learning on the ILSVRC classification task,
as described in [10], and only the last few layers of the
network are fine-tuned during training. The training and
validation levels of accuracy of this experiment can be
found in Figure 13. The results seem to indicate that the
best tradeoff between performance and training time is
achieved by the ResNet34 and ResNet50 architectures. We
decided to go with the latter because it achieved a higher
validation accuracy at a very small training time increase
from ResNet34.

During this experiment, we observe two things. First,
the loss converges really fast to a really low level during
training, as evident in Figure 14. Although the eventual
convergence of the network to a low level of loss is a de-
sired behavior, the fact it happens so fast, over the course of
fewer than 10 epochs, is an indicator that we might be over-
fitting to the training set. This hypothesis is reinforced from
the fact our training accuracy is consistently 4%-5% higher
than our validation accuracy. This difference should not be
that big given both training and validation samples origi-
nate from the same CARDS subcomponents. Interestingly

Figure 14. Loss over number of epochs for ResNet50 training. The
blue line represents the loss during traing and the orange line rep-
resents the loss during validation.

enough, similar behavior was exhibited with all 4 architec-
ture depths we experimented with. This is an indicator we
are not making the most out of the architectures we use due
to having a small training set. The best way of working
around this would be to expand CARDS.

5.3. Performance Evaluation

We test our neural network implementation on the
Complex-Bridge subcomponent to be able to perform
a meaningful comparison against our baseline. We use
the ResNet50 architecture with three different types of
initialization. Random Init is our model with its weights
randomly initialized. Pretraining is our model with its
weights initialized using transfer learning on the ILSVRC
classification task, as described in [10]. Fine-tuning only
is also initialized the same way. The difference between
the last two models is that Pretraining is fine-tuned across
all layers, while we fine tune only the last few layers of
Fine-tuning only during backpropagation. All models are
trained with the same (learning rate, decay period, decay
rate, momentum) parametrization, which is specified at the
top fo the table in Figure 15. All models take advantage of
the data augmentation techniques described in section 5.2.

Figure 15 presents the results of our performance evalu-
ation across all three models. In particular, we observe that
transfer learning is essential, else our model attains very
low levels of accuracy. In particular, Random Init achieves
worse accuracy levels than our baseline implementation.
This is very likely because our dataset is not large enough
to allow the network to learn generic objectness features
that have been pre-learnt by training the first few layers on
ImageNet [4, 10]. Thus, we conclude transfer learning is
indeed essential for this task.

12

Figure 15. Test-time evaluation and weight initialization comparison using ResNet50.

If we focus on the other two models, we see that we
achieve 86.73% and 71.2% precision, with Pretraining
achieving the better performance. However, in both cases
the test-time accuracy is significantly lower than the vali-
dation and training accuracy. This validates our hypothesis
that we are overfitting, which is expected when training
deep networks on relatively small datasets, like the CARDS
dataset. However, it is very important to keep in mind that
our test set is harder than our training and validation set, due
to Complex-Bridge containing card instances from various
decks and richer table environments, which leads to card
instances that are harder to classify than the ones found in
Single-Card and Simple-Bridge. Thus, we naturally expect
lower test accuracy than validation accuracy. This implies
that although the there is a 13% drop in the accuracy
between training and testing on our best performing model,
the effective accuracy drop is smaller than that, as a portion
of 13% is a result of increased difficulty in the testing
instances. Thus, the degree of overfitting is smaller than it
initially looks, despite still being significant.

Comparing against our baseline implementation, we see
a huge performance increase from 38.09% classification
accuracy to 86.73%. Not only that, but the inference time
of our deep learning implementation is significantly lower.
Specifically, the per-frame classification rate on a CPU
is 0.19 seconds. Therefore, deep learning outperforms
traditional computer vision techniques in accomplishing
this task both in terms of time-efficiency and in terms of
lower generalization error.

Nevertheless, the deep learning system is not ideal. In
particular, we have identified two failure modes that are the
main sources of error: 1) our deep learning model has a
hard time distinguishing between the highly similar figure
cards and 2) our deep learning model is not as good at clas-
sifying correctly object classes that have very few training
instances compared to similar object classes. Examples of
(1) are illustrated by the red highlights in Figure 16. The
model seems to predominantly predict Queen of Diamonds
over Queen of Hearts, Queen of Spades over Queen of
Clubs, Jack of Diamonds over Jack of Hearts, and Jack
of Spades over Jack of Clubs, which results in this huge

discrepancy in classification accuracy within each of those
object class pairs. This is very likely due to instances of
each pair of classes being very visually similar to each
other at low resolution, making it really hard for the model
to tell the difference for each other. For example, if one
compare the Queen of Hearts to the Queen of Diamonds,
one observes that there are very few fine details on the
figure that make the two cards distinct.

An example of the second model weakness is the pair
of the 9 of Clubs, with only 9 instances and significantly
lower accuracy than the rest of the classes with rank 9,
and the 2 of Diamonds, with only 12 instances and a lower
classification accuracy than the rest of the classes with rank
2, both highlighted blue in Figure 16. However, we also
observe odd levels of low classification accuracy for classes
with a large number of instances in the training set, such
as the 10 of Hearts, with 66 instances but 0% accuracy.
We unfortunately can not explain this behavior, other than
using the fact that each object class has approximately 9-10
instances in the test set on average due to the small size
of CARDS, which could have led to a non-representative
test-time evaluation for some object classes.

6. Conclusions and Future Work
This project is a very important first step towards solving

the problem of automated card tracking for bridge game
broadcasting. Our work specifically made three major
contributions towards the completion of this task. We
introduced the CARDS dataset, the first ever card detection
and classification dataset that can serve as a valuable source
of data to train future models on and great baseline to
improve upon for the creation of a larger, more general
card detection and classification dataset. We developed
an algorithmic baseline using traditional computer vision
techniques that achieved high detection accuracy in simple,
restricted setups that could be replicated in practice given
enough restrictions on the way professionals play. Finally,
we trained a deep learning implementation that converges
fast to high card classification accuracy (86.73%), despite
the fact it is trained on a restricted amount of data. Thus,

13

Figure 16. Class-based breakdown of test-time performance of the ResNet50 model.

we showed the problem at hand is definitely tractable and
we have setup the framework necessary for the final steps
to be taken towards its solution.

The next steps to be taken would be to train a card de-
tection network using the R-CNN family of architectures,
which are the state of the art systems for object detection
[7]. To avoid overfitting, we would also need to expand
CARDS. The best way to scale up would be to crowd-source
annotations using Amazon Mechanical Turk. Since we have
already implemented a bounding box annotation suite, this
should not be a particularly challenging task. To improve
detection performance further and potentially speed up in-
ference, we can enhance the detection system with bridge
game heuristics that would allow the system to be aware
of the bridge game rules and the predetermined deal of the
hands. This would enable the system to predict the next le-
gal play without necessarily running all frames through the
network. Once the detection network is fully trained, all that
is left is integrating it with the online broadcasting system
and test it in real time. This implies that inference times for
detection need to be fast enough to allow for live streaming
by the broadcasting system. Only a detection system with
high accuracy levels and low inference times would be fully
commercializable.

7. Acknowledgements
This work would have not been possible without the con-

tribution of many admirable individuals. I would like to
first thank my two advisors, Adam Finkelstein and Greg
Humphreys, whose insights and experience taught me a lot
about the fields of computer vision and bridge and enabled
me to push through major roadblocks in my project by re-
alizing alternative paths that allowed me to achieve much

better results than I would have otherwise. I would like
to thank Amber Lin, Shun Lam, Nathan Finkle, Andreea
Magalie, and Thomas Fair for offering to play bridge for
me so that I could collect the necessary samples to form
the CARDS dataset, without which this project would have
been impossible. I would like to thank my dear friends,
Grace Guan, Matthew Li, Gordon Chu and Parker Kushima,
who are there to back me up and cheer me up whenever
things look grim. Finally, I would like to thank my beloved
parents and siblings without the love and care of whom I
would not be where I am right now.

References
[1] N. M. Ali, S. W. Jun, M. S. Karis, M. M. Ghazaly, and

M. S. M. Aras. Object classification and recognition using
bag-of-words (bow) model. In 2016 IEEE 12th International
Colloquium on Signal Processing Its Applications (CSPA),
pages 216–220, March 2016.

[2] Contact Bridge. Contact bridge — Wikipedia, the free ency-
clopedia, 2018. [Online; accessed 18-April-2018].

[3] N. Dalal and B. Triggs. Histograms of oriented gradi-
ents for human detection. In 2005 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 886–893 vol. 1, June 2005.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

[5] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman. The pascal visual ob-
ject classes challenge: A retrospective. International Journal
of Computer Vision, 111(1):98–136, Jan. 2015.

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. IEEE Trans. Pattern Anal. Mach. Intell.,
32(9):1627–1645, Sept. 2010.

14

[7] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and semantic
segmentation. CoRR, abs/1311.2524, 2013.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[9] S. He and Y. Karakozis. Complex background subtraction
using gaussian models. 2017.

[10] M. Huh, P. Agrawal, and A. A. Efros. What makes imagenet
good for transfer learning? CoRR, abs/1608.08614, 2016.

[11] G. Humphreys. Series of interviews conducted by Ioannis
Christos Karakozis; February, 2018.

[12] I. Katz and H. Aghajan. Multiple camera-based cham-
fer matching for pedestrian detection. In 2008 Second
ACM/IEEE International Conference on Distributed Smart
Cameras, pages 1–5, Sept 2008.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’12, pages
1097–1105, USA, 2012. Curran Associates Inc.

[14] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B.
Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft COCO: common objects in context.
CoRR, abs/1405.0312, 2014.

[15] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, 60(2):91–110, Nov. 2004.

[16] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[17] M. Software. Chi square table, 2018.
[18] S. Suzuki and K. Abe. Topological structural analysis of dig-

itized binary images by border following. Computer Vision,
Graphics, and Image Processing, 30(1):32–46, 1985.

[19] P. Viola and M. J. Jones. Robust real-time face detection. Int.
J. Comput. Vision, 57(2):137–154, May 2004.

15

